首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83271篇
  免费   14050篇
  国内免费   18834篇
测绘学   6950篇
大气科学   11717篇
地球物理   15429篇
地质学   45445篇
海洋学   9597篇
天文学   9525篇
综合类   5409篇
自然地理   12083篇
  2024年   217篇
  2023年   877篇
  2022年   2364篇
  2021年   2732篇
  2020年   2781篇
  2019年   3209篇
  2018年   2635篇
  2017年   3017篇
  2016年   3142篇
  2015年   3533篇
  2014年   4548篇
  2013年   4636篇
  2012年   4967篇
  2011年   5435篇
  2010年   4822篇
  2009年   5934篇
  2008年   5808篇
  2007年   6193篇
  2006年   5925篇
  2005年   5378篇
  2004年   4821篇
  2003年   4554篇
  2002年   3898篇
  2001年   3514篇
  2000年   3295篇
  1999年   3008篇
  1998年   2602篇
  1997年   2059篇
  1996年   1813篇
  1995年   1532篇
  1994年   1533篇
  1993年   1318篇
  1992年   960篇
  1991年   735篇
  1990年   587篇
  1989年   477篇
  1988年   370篇
  1987年   224篇
  1986年   163篇
  1985年   126篇
  1984年   62篇
  1983年   51篇
  1982年   50篇
  1981年   36篇
  1980年   38篇
  1979年   31篇
  1978年   48篇
  1977年   33篇
  1975年   6篇
  1954年   21篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
101.
We present results from a new simulation code that accounts for the evolution of the reservoirs of carbon dioxide on Mars, from its early years to the present. We establish a baseline model parameter set that produces results compatible with the present (i.e., Patm?6.5 mbar with permanent CO2 ice cap) for a wide range of initial inventories. We find that the initial inventory of CO2 broadly determines the evolutionary course of the reservoirs of CO2. The reservoirs include the atmosphere, ice cap, adsorbed CO2 in the regolith, and carbonate rocks. We track the evolution of the free inventory: the atmosphere, ice cap and regolith. Simulations begin at 4.53 Gyr before present with a rapid loss of free inventory to space in the early Noachian. Models that assume a relatively small initial inventory (?5 bar) have pronounced minima in the free inventory of CO2 toward the end of the Noachian. Under baseline parameters, initial inventories below ∼4.5 bar result in a catastrophic loss of the free inventory to space. The current free inventory would be then determined by the balance between outgassing, sputtering losses and chemical weathering following the end of the late bombardment. We call these “thin” models. They generically predict small current free inventories in line with expectations of a small present CO2 ice cap. For “thick” models, with initial inventories ?5 bar, a surplus of 300-700 mbar of free CO2 remains during the late-Noachian. The histories of free inventory in time for thick models tend to converge within the last 3.5 Gyr toward a present with an ice cap plus atmospheric inventory of about 100 mbar. For thick models, the convergence is largely due to the effects of chemical weathering, which draws down higher free inventories more rapidly than the low. Thus, thick models have ?450 mbar carbonate reservoirs, while thin models have ?200 mbar. Though both thick and thin scenarios can reproduce the current atmospheric pressure, the thick models imply a relatively large current CO2 ice cap and thin models, little or none. While the sublimation of a massive cap at a high obliquity would create a climate swing of greenhouse warming for thick models, under the thin model, mean temperatures and pressures would be essentially unaffected by increases in obliquity.  相似文献   
102.
为了研制亚毫米波射电天文用超导SIS(超导 -绝缘体 -超导 )接收机 ,我们重点开展了如下研究 ,1 )Nb超导SIS结在其能隙频率附近的量子混频特性 ,及其结合高能隙超导薄膜 (NbTiN)和高电导率金属薄膜 (Al)分布结阵在 780 - 950GHz频率区间的量子混频特性 ;2 )亚毫米波超导混频器嵌入阻抗的数值和实验表征 ;3)高电流密度小面积Nb超导SIS结的制备和特性表征 ;4)一个 60 0 - 72 0GHz超导SIS混频器的研制和特性表征。本文详细介绍了相关的数值分析和实验测量结果。  相似文献   
103.
AGGLOMERATION AND RADIATION EFFECT OF THE PULL OF URBANIZATION   总被引:2,自引:1,他引:1  
In order to explore the train of thought for China‘s urbanizing development and coordinated rural eco-nomic development, and to find good ways of solving rural problems through urbanization, this paper absorbs the push-and-pull forces theory and the systematic dynamic theory in the traditional population migration theories, views urbanization as a dynamic system, makes research on the push-and-pull mechanism of urbanization. The pulling power of urbanization is analyzed according to two aspects, the agglomeration effect and the radiation effect of cities. The agglomeration effect provides continuous propelling force for urbanization, and the radiation effect further accelerates the urbanization process by pushing forward the development of rural economy. Of course, the slow de-velopment of urbanization can result in the hindrance to rural economic development.  相似文献   
104.
105.
106.
107.
Based on the analysis of the development of GIS technology and application,this paper brought forward the concept of GoGIS,namely Cooperative GIS ,CoGIS is GIS facing group-users and supporting human-human interaction,which makes it differ from the former GISs,Then,the characteristics of general Computer Spport Cooperative Work (CSCW)applications and the complexity of Geographic Information Science were analyzed,and the conclusion the CoGIS was not a simple GIS layer on CSCW was reached,Further,this paper gaver the hierarchical architecture of CoGIS,and analyzed the coperative platform in detail from the following:1)basic elements;2) collaboration patterns;3) cooperation control mechanism;4) synchronization mechanism;5) security and 6) group communication and so on.With those,the problems about GIS applications are discussed,such as 1)distributed multi-source GIS information and knowledge sharing platform;2)the fusion and visualization of GIS information;3)virtual reality cooperative modeling;4) dymamic simulation;5)expert system and 6) decision-making.Finally,this paper analyzed CoGIS application mode in brief.  相似文献   
108.
109.
110.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号